
acx2 Documentation
Release 1.0.0

Adam Foster

Jan 18, 2023

Contents

1 Installation 3

2 Usage 5
2.1 Data Files . 5
2.2 Classes . 5
2.3 XSPEC . 6

3 Version History 9
3.1 acx2 module class reference . 9

i

ii

acx2 Documentation, Release 1.0.0

The AtomDB CX model is a model of charge exchange during a collision between a recombining charged ion and a
donor atom or ion. The electron is transferred from the donor to the recombining ion, forming a recombined ion often
in an excited state. As this recombined ion relaxes to its ground state, it releases a cascade of photons with relative
intensities charactersitic of CX recombination.

An original version of ACX was released in 2016, which used empirical formulae for CX emission of all ions of
all the elements up to nickel. These formulae, crucially, did not include any velocity dependent effects, which are
important for correctly calculating the n, l and S of the excited levels captured into. In addition, spectral information
was hardwired and difficult to update, resulting in updates to AtomDB not often being reflected in the following charge
exchange spectra.

We have now taken CX cross section data from the Kronos database (1,2,3), which covers many fully stripped and one
electron recombining ions, and included it here. This has created a much improved dataset, which correctly captures
the energy dependence of the process for these ions. For other ions not in the Kronos database, the model falls back
on ACX1 behaviour.

Once Kronos or ACX1 have been used to calculate the correct capture cross sections for each n, l and/or S shell,
the data is combined with the AtomDB database (www.atomdb.org) to calculate the cascade path to ground, and the
subsequent emissivities and wavelengths. For ions with capture in to highly excited levels which AtomDB doesn’t
contain, AUTOSTRUCTURE calculations are preformed to get energy levels, wavelength and A-values for these
transtitions. The result is a set of 3 files for each donor ion. The sigma file contains the cross section information for
each ion. The line and cont[inuum] files contain the line emission and continuum emission from each shell capture
in to, with a resolution appropriate for the model in question. For example, for ions with nlS resolved Kronos data, a
spectrum is produced for each n, l and S capture and subsequent cascade. Thus there can be numerous spectra for each
ion - there are 239 entries for Cl7+reflecting each n, l and S which Kronos contains cross sections for. For ACX-level
data, the spectra are calculated for each relevant n and the four l distributions, as outlined in the ACX documentation
(even, statistical, Landau-Zener and separable).

For a given interaction velocity or energy, the model uses the center of mass energy to obtain the cross section for
capture into each shell from Kronos. For each shell where the cross section is greater than zero, a spectrum is calculated
from the line and cont files. These are then multiplied by the appropriate cross section and summed to give the spectrum
for CX of a particular ion.

1 Mullen, P. D., et al. ApJS 224, 31 (2016)
2 Mullen, P. D., et al. ApJ 844, 7 (2017)
3 Cumbee, R. S., et al. ApJ 852, 7 (2018)

Contents 1

acx2 Documentation, Release 1.0.0

2 Contents

CHAPTER 1

Installation

Standard python installation

python setup.py install

Note: ACX2 is a python 3 only module. Depending on your system’s setup, you may need to substitute python3
for all references to python.

There are several useful flags that can be provided to this call, depending on your system:

• --user flag causes installation in the user’s home directory (useful if you lack root priviliges)

• develop instead of install will install links to the current directory. This is useful if you want to
edit/debug/develop the files further.

3

acx2 Documentation, Release 1.0.0

4 Chapter 1. Installation

CHAPTER 2

Usage

Each model in ACX2 can have an arbitrary set of donors. By default for the XSPEC model these are neutral H and
He, but others may be selected. Additional input files will be required for these - please contact the project via the
AtomDB or GitHub pages to make or discuss requests.

2.1 Data Files

Each model requires a set of data files to be installed with it. As these files are large they cannot be exported through
GitHub, and they should instead be downloaded from the AtomDB CX webpage, www.atomdb.org/CX.

The files for each donor are:

• sigma files: the cross sections for capture into each n, l and S (depending on the ion) from the Kronos
database

• line files: the line emission for capture into each n, l and S (depending on the ion) or each n and ACX1
l distribution for ions with no Kronos data

• cont files: same as line files, but including continuum emission. True continuum in CX is entirely 2-
photon emission from H-, He- and Be-like ions.

Note: The emissivity data files have thousands of HDUs as currently assembled. Although these files read quickly in
python, when opening in some programs (e.g. fv) the load times can be upwards of 10 minutes. Rearranging these
files to not cause this issue is a priority to fix.

2.2 Classes

The acx2.py file contains a range of classes which can be used to model different aspects of the charge exchange.
The basic principal is that the fits files contain the emissivity for each ion, broken down to reflect the way that Kronos
handles the data.

5

acx2 Documentation, Release 1.0.0

Kronos Resolution Typical recombining ion ACX2 handling
n, l, S resolved hydrogenic bare C,N,O,Ne Capture into each n, l, S
n resolved bare Capture into each n, ACX for l distribution
not included all others Capture into 2 n shells, ACX for l distribution

To handle this, the acx2 module contains 4 levels of classes:

• ACXModel : The overall ACX model. Can include multiple donor ACXDonorModel objects.

• ACXDonorModel : The ACX model for one donor. Contains spectra from each recombining ion.

• CXIonSpectrum : The spectrum for one recombining ion. Placeholder for CXIonSpectrum_ACX1,
CXIonSpectrum_N, CXIonSpectrum_NLS classes, which handle the 3 cases is the table above. Con-
tains CXShellSpectrum as required to get the data.

• CXShellSpectrum : The actual spectrum from a single each n, l, S shell (or n, ldist shell).

2.3 XSPEC

To use the model in XSPEC, one can ignore the class details above. Unfortunately, the code only works with the
XSPEC python interface, pyxspec for now. Before loading the code, you will need to edit the acx2_xspec.py file
to change the data file paths.

Note: You will need to edit the acx2_xspec.py file: #. It may need to be moved into your path (depending on the
data) #. The data file locations are hardcoded, you will need to update them to reflect where you have installed the
line, continuum and cross section files.

To load the ACX2 model into XSPEC, acx2_xspec module contains what you need. From a python3 shell:

import the xspec python module
import xspec
import acx2 wrapper
import acx2_xspec

Once this is done, the data will load.

Three different models are loaded:

• acx2 : Emission from CX with the 14 main elements. Abundance is tied between all elements (so there is only
1 abundance keyword). Analogous to the apec model.

• vacx2 : Emission from CX with the 14 main elements. Abundance is free to vary between all the elements
(though it starts frozen). Analagous to the vapec model.

• vvacx2 : Emission from 27 elements, H through Ni excluding Co. Abundance is free to vary between all the
elements.

Note: Note that in the acx and vacx cases, unlike in the apec and vapec models, the effective abundance of the minor
recombining elements is 0, not solar. This speeds up calculation time and does not significantly effect the resulting
emission.

Once you have this, models can be used in pyxspec in the usual way, e.g.

6 Chapter 2. Usage

https://heasarc.gsfc.nasa.gov/xanadu/xspec/python/html/index.html

acx2 Documentation, Release 1.0.0

m = xspec.Model('tbabs(pow+vacx2)')

2.3.1 Model parameters

Parameter Definition
temperature Plasma temperature (keV). Used for recombining particle ion fraction
collnpar Collsion parameter (kev/u,km/s). Reduced energy or velocity of collision
collntype Sets meaning of collnpar:

1 - center of mass energy (kev/u)
2 - center of mass velocity (km/s)
3 - donor ion velocity (km/s)
4 - recombining ion velocity (km/s)

acxmodel ACX model to fall back on, from 1 to 8.
recombtype single recombination (1) or all the way to neutral (2)
Hefrac Number fraction of donor which is He (remainder is H).
abund recombining elemental abundances. (given by individual element in vacx and vvacx)

Note: The units for collision velocity in XSPEC are km/s, not cm/s as in the underlying ACX models. This is to keep
the numbers closer to 1, which XSPEC likes.

2.3.2 Normalization of the model

Ths model deals with two emissivities, which can get confusing. The photon emissivity of a line 𝑖 → 𝑗 is defined as:

𝜖𝑖𝑗 = 𝑁𝑖𝐴𝑖𝑗

That is, the number of emitted photons 𝑐𝑚−3𝑠−1 is the number density 𝑁𝑖 of ions in state 𝑖, times the spontaneous
transition probability 𝐴𝑖𝑗 .

We can ease the calculation of 𝑁𝑖 by separating out the calculation:

𝑁𝑖 =
𝑁𝑖

𝑁𝑧1

𝑁𝑧1

𝑁𝑍

𝑁𝑍

𝑁𝑟
𝐻

𝑁𝑟
𝐻

where 𝑁𝑧1 is the ion abundance and 𝑁𝑍 is the element abundance. The 𝑁𝑧1/𝑁𝑍 term is set by the temperature
parameter, which is used to set the ion fraction. The 𝑁𝑍/𝑁

𝑟
𝐻 is set for the recombining plasma by the abundance

parameter, relative to the solar values of Anders and Grevesse 1989.

The ACX2 model solves the 𝑁𝑖/𝑁𝑧1 problem by setting up a radiative matrix, with levels populated by CX and then
radiative decay to the ground state forming the rest of the matrix. The CX rate coefficient into level 𝑖 is given by

𝛼𝐶𝑋
𝑖 (𝑐𝑚3𝑠−1) = ⟨𝑣𝑐𝑜𝑚𝜎𝑖(𝐸)⟩

and the rate per recombining ion per second is

𝛼𝐶𝑋
𝑖 (𝑠−1) = ⟨𝑣𝑐𝑜𝑚𝜎𝑖(𝐸)⟩ 𝑁𝑑

𝐻

We solve the radiative matrix to obtain 𝑁𝑖/𝑁𝑧1, without the donor densities included (as they are multipliers on all
the diagonal matrix elements we are effectively just moving them outside the matrix). This leaves us with:

𝜖𝑖𝑗 =
𝑁𝑖

𝑁𝑧1

𝑁𝑧1

𝑁𝑍

𝑁𝑍

𝑁𝐻
𝑁𝑟

𝐻𝐴𝑖𝑗𝑁
𝑑
𝐻

2.3. XSPEC 7

acx2 Documentation, Release 1.0.0

ACX2 calculates the photon emissivity coefficient, 𝜀𝑖𝑗 = 𝑁𝑖

𝑁𝑧1
𝐴𝑖𝑗 , and multiplies in the elemental and ion abundances

based on the abundance and temperatures specified. This leaves:

𝜖𝑖𝑗 = 𝜀𝑖𝑗
𝑁𝑧1

𝑁𝑍

𝑁𝑍

𝑁𝐻
𝑁𝑟

𝐻𝑁𝑑
𝐻

𝜖𝑖𝑗 = (ACX2output)𝑁𝑟
𝐻𝑁𝑑

𝐻

To convert this to a flux from a source to our instrument we integrate over the emitting volume and account for radiation
over 4𝜋. We also, at this point, repeat the process for the He donor and add the results, accounting for the different
donor ion fractions.

Γ𝑖𝑗(𝑐𝑚
−2𝑠−1) =

∫︀
(ACX2output)𝑁𝑟

𝐻𝑁𝑑
(𝐻+𝐻𝑒)𝑑𝑉

4𝜋𝐷2

2.3.3 XSPEC Normalization of the model

The geometric norm represents the geometric parts of the flux calculation with a single number:

normgeom(𝑐𝑚−5) =

∫︀
𝑁𝑟

𝐻𝑁𝑑
(𝐻+𝐻𝑒)𝑑𝑉

4𝜋𝐷2

The XSPEC normalization is adjusted from the above in a few ways to make fitting more reliable. First, there is a
factor of 1010 applied to bring the value closer to 1, which makes XSPEC fitting more reliable.

Secondly, for versions ≥ 1.1.0, the normalization is divided by the center of mass velocity. This has been implemented
to compensate for the increase in flux with an increase in velocity (since 𝜀𝑖𝑗 ∝ ⟨𝑣𝑐𝑜𝑚𝜎𝑖(𝐸)⟩), which resulted in the
norm being anticorrelated with the collnpar. As this value would be different for every ion, the correction factor is
based on a carbon-12 recombining ion and a hydrogen donor.

To recover the true emissivity of the plasma given an XSPEC fit result:

1. If using version ≥ 1.1.0, calculate the correction factor, cf:

1. If collntype == 1: cf = numpy.sqrt(4786031.3*collnpar/25.)

2. If collntype == 2: cf = 1.0 * collnpar

3. If collntype == 3: cf = 1.0 * collnpar/(1.0+12.0) = collnpar/13

4. If collntype == 4: cf = 12.0 * collnpar/(1.0+12.0) = collnpar*12/13

2. Else, cf = 1

3. normgeom = normXSPEC * cf * 10−10

8 Chapter 2. Usage

CHAPTER 3

Version History

1.0.0 March 15th 2019 Initial release

1.0.1 October 25th 2019 Fixed error in vacx2 XSPEC interface, which specified but did not implement fluorine leading
to an off-by-one error for all higher-Z elements

1.0.2 February 27th 2020 Error in velocity unit conversion corrected, thanks to Gabrielle Betancourt-Martinez for
reporting the bug. This will not have affected fits performed through XSPEC

1.0.3 July 9th 2020 Updated code for compatibility with changes in the PyAtomDB interface

1.1.0 November 16th 2022 Major changes to the normalization. It now has the center of mass velocity of carbon-12
divided out of it. This removed the velocity-normalization correlation which was otherwise present.

Added redshift to parameters.

Converted XSPEC interface collntype, acxmodel and recombtype into integer switches

1.1.1 December 1st 2022 Added extra option, ‘calc_line_emissivity’, which returns the emissivity of a specific tran-
sition due to CX. This can also be accessed during XSPEC sessions. Put more examples in the new “examples”
directory

1.1.2 December 2nd 2022 Bugfix to ‘calc_line_emissivity’, updates to examples.

1.1.3 January 18th 2023 Bugfix to ‘axc2_xspec’ interface: vacx and vvacx had incorrect parameter indexes

3.1 acx2 module class reference

• genindex

• modindex

• search

9

	Installation
	Usage
	Data Files
	Classes
	XSPEC

	Version History
	acx2 module class reference

